Air Cooled Cables

Determining which air cooled welding cable that is right for you is a lot easier than you might guess. Below are the charts and guides needed to make sure you get the right cable every time.

Note: a chart for sizing the correct gauge cable is at the bottom of the page, as well as guidelines for installation.

To order an air cooled cable, you will need the length measured from the bolt hole centers at each end of the cable. On terminals with two holes, measure from the centers of the two outer holes. It is also worth mentioning that air cooled cables can be manufactured with silver plated terminals which will help lower the resistance at the bolt hole. Cable ends can be manufactured up to 3-7/8" long for special applications.

The following information should be provided:

Air Cooled Dry Jumper cable DFJJ DJFL MCM - Production Engineering

1. Select Styles of Terminal Ends:

Air Cooled Electrode Cable - Production Engineering

Air Cooled Cable ends DJFF DJFL - Production Engineering

2. Taking Cable Measurements:

Length of the Cable = L (distance between hole centers)
Terminal Face Width = W (1.250, 1.375, 1.500)
Terminal Face Width = T ( on dependent on the terminal face width, and the gauge of the cable, as outlined in the table below.)

MCM1.250" Wide1.375" Wide1.500" Wide
400 0.405 0.370 N/A
500 0.510 0.465 0.425
600 0.540 0.490 0.450
750 0.650 0.590 0.545
1000 0.825 0.750 0.690
1200 0.965 0.880 0.805
1500 1.165 1.060 0.975
2000 N/A 1.575 1.440

- The standard terminal width is 1-1/4". If a 1-3/8" or 1-1/2" wide terminal is desired, please be sure to specify this.
- If you are unsure of what MCM your application requires, you can size the correct cable yourself.

3. More Cable Options:

Isolated Conductor

Cables with isolated, individually wrapped conductors increase cable life by preventing common failure points:

Isolated Conductor - Production Engineering

  • Eliminated Frictional wear between adjacent copper ropes by encasing them in rubber tube.
  • Reduces the number of friction points for wear between strands from 36 to 9, in the rope cross section.
  • Reduced strand failure at the rear terminal by adding a Stabilizer flare.
  • Increased flexibility due to the fact that a standard lapped cover is not required.

Note: Thermal tests have indicated that the operating temperatures of this style is virtually identical to that of standard jumper using a lapped cover.

Stabilizer Collar

Stabilizer Collar - Production Engineering

Increased strand life at the cable terminal is the advantage of a stabilizing collar. It slightly increases the minimum flex radius for the jumper, reducing over flexing.

Extra Flexible

Extra Flexible Cable - Production Engineering

36 AWG copper rope stranding and an extra flexible protective cover are used to create an extra flexible jumper. The result is a jumper that is over twice that of a regular jumper. This makes it ideal for robotic applications and where limited space makes standard cables a hard fit.

The DJ-XF is available in 750, 1000, and 1200 MCM. Other options include a perforated cover or a special Hypalon high temperature cover, able to withstand 300°F to -30°F.

How to install air cooled cables

Air Cooled Cables - Production Engineering

Air cooled jumpers should be installed in such a manner that the mechanical stresses at the terminals will be reduced to a minimum. This may be accomplished by installing the jumper with a little slack, which will allow the jumper to flex freely.

Bend radii should not be sharp, and should be distributed throughout as much of the jumper as possible, in order to distribute the frictional wear over the greatest possible area. See the below charts for suggested minimum bend radii.

Recommended Minimum Bend Radii:Minimum Distance from the end of the hose to the point where the bend radii should start is:
500 MCM and Below 2" 350 MCM - 600 MCM 2"
600 MCM - 1500 MCM 3" 750 MCM 2-1/2"
  1000 MCM 3"
  1200 MCM 3-1/2"
  1500 MCM 4"

Air Cooled Jumper Sizing

Use the following method to determine what size cable should be used for your application. First you use the Conversion Factor chart to determine your "Continuous Duty Current"; then you read the correct size cable off the second chart. An example is worked out below.

Step 1

Lay one side of a straight edge across the graph at the six cycles of current "one time" point (the left hand vertical scale of the conversion factor chart).

Step 2

Pivot the other end of the straight edge across to line up with the "60 welds per minute" on the far right vertical scale.

Step 3

At the intersection of your straight edge with the diagonal conversion factor scale line, you should be able to read a conversion factor of .32 off the lower 1/2 of the line.

Step 4

Multiply the required current (10,000 amps) by the conversion factor (.32) to get the "continuous duty current" of 3,200 amps.

Conversion Factor & Duty Cycle Chart

Conversion Factor & Duty Cycle Chart - Production Engineering

Step 5

Line up your straight edge on the 3200 continuous duty amp mark, and find the intersection with your desired length line (from below).

Step 6

Any cable whose line is above this point may be safely used, since the load it would carry will be within its thermal capacity. In this example a 1200 MCM cable can be used and stay within design tolerances.

Air Cooled Jumper Selection Chart

Air Cooled Jumper Selection Chart - Production Engineering

More Specifications
D.C. Resistance of Single Conductor
Air Cooled (and water cooled) Cables

MCMD.C. Resistance
(ohms per foot at 70 C)
350 .0000376
400 .0000322
500 .0000263
600 .0000217
750 .0000172
1000 .0000130
1200 .0000110
1500 .0000088
2000 .0000066
Air Cooled Cables

Receive Additional Information


Powered by ChronoForms -